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Abstract 

 US policymakers at the local, state, and federal levels are considering policy mechanisms 

to promote renewable energy development and ensure a just transition to a clean energy 

infrastructure. These policies have the potential to both reduce greenhouse gas emissions and 

create jobs; however, the number of actual jobs created from these policy instruments is often 

disputed. In this study, I evaluate the direct non-hydroelectric renewable energy employment 

impacts from eight types of renewable energy policies: (1) subsidy programs; (2) corporate, (3) 

personal, and (4) other tax incentives; (5) performance-based incentives; (6) industry 

recruitment/support; (7) renewable portfolio standards; and (8) net metering. Using data from 

3,035 US counties from 2001 to 2017, I employ Fixed Effects (FE) regression models controlling 

for calculated propensity scores, which address the potential selection bias in the model. The 

results indicate that three of the policy instruments (renewable portfolio standards, industry 

recruitment/support, and performance-based incentives) have positive and statistically significant 

impacts on direct non-hydro renewable energy employment at the county level. The policy type 

with the greatest positive impact was industry recruitment/support. Counties with industry 

recruitment/support policies present, on average, had 82 more direct non-hydro renewable 

energy jobs than counties that did not have industry recruitment/support present, holding all else 

constant. Critically, the results show the importance of addressing selection bias in analyses of 

renewable energy policy outcomes, as the models run without controlling for propensity scores 

led to an overestimation of employment impacts. 
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Chapter 1: Introduction 

1.1 Summary and Rationale 

 The US must rapidly reduce our greenhouse gas (GHG) emissions to reach the climate 

targets set out in the 2015 Paris Agreement and avoid the most harmful impacts of climate 

change. This will require the electricity sector to transition its electricity generation from 

traditional fossil-fuel technologies to low- or no-carbon technologies. This transition to a clean 

energy infrastructure will engender a wide range of benefits and burdens. The primary benefits 

are increased energy security, reduced GHG emissions, and economic growth from 

employment/innovation opportunities (Wei et al., 2010). The primary burdens, on the other hand, 

are loss of employment in fossil-fuel related industries and a loss of tax revenue from fossil-fuel 

related economic activity. For the clean energy transition to be just and equitable, these benefits 

and burdens must be spread evenly across the US and across demographics (McCauley & 

Heffron, 2018).  

 The term just transition, first used in the US labor movement in the 1990s, addresses the 

questions of ‘who wins, who loses, how and why’ as they relate to the energy transition (Newell 

& Mulvaney, 2013). There are three primary tenets of a just transition discussed in the literature 

(Carley & Konisky, 2020; McCauley et al., 2013). First, distributional justice calls for the equal 

distribution of benefits and burdens on all members of society regardless of location or 

demographic. Second, procedural justice calls for equitable energy decision-making processes 

that engage all stakeholders who wish to participate. Third, recognition justice calls for 

understanding historic and ongoing inequalities and seeks to reconcile them. This just transition 

framework provides an equitable blueprint to decarbonization of the electricity sector, in the 

hopes that no one is left behind. 
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 Communities that have historically relied on fossil-fuel based employment and tax 

revenue, specifically coal-based electricity production, are on the frontlines of the clean energy 

transition, meaning they are expected to lose jobs and tax revenue. Per unit of energy produced, 

carbon dioxide emissions from burning coal are about 40 percent higher than those from oil and 

50 percent higher than those from natural gas (Pollin & Callaci, 2019). As a result, replacing coal 

as an energy source has been prioritized to reduce GHG emissions, and employment and tax 

revenue from coal-related activities have declined faster than those from oil or gas activities. 

Communities that have historically relied on coal-based employment and tax revenue have also 

been found to be less socio-economically resilient to the clean energy transition (Hincapie-Ossa, 

n.d.). Noteworthy, the fiscal impacts of this transition of energy sources only accounts for part of 

the cost, as many of these frontline communities have an ‘economic identity’ related to coal 

mining or coal-based electricity generation (Mayer, 2018). 

 Energy employment, both the loss of traditional fossil fuel jobs and the potential of job 

creation in renewable energy, energy efficiency, and grid modernization, has been a common 

political talking point related to the clean energy transition in recent US presidential elections 

(Healy & Barry, 2017). As a result, there has been significant research into the employment 

impacts of a clean energy transition. Garrett-Peltier (2017), for example, finds that each $1 

million of investment shifted from fossil fuels to renewable energy or energy efficiency will 

create a net increase of 5 jobs. In addition, renewable energy and low carbon sectors generate 

more jobs than fossil fuel-based sectors per unit of energy delivered (Wei et al., 2010). Although 

these studies highlight the potential employment benefits of the clean energy transition, one key 

obstacle remains: there is a disconnect between where coal-based jobs are being lost and 

renewable energy jobs are being created. The choropleth maps in Figure 1 highlight the 
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disconnect between renewable energy employment in shades of orange (panel A) and coal 

employment in shades of purple (panel B) in the year 2017. 

 

Figure 1: Geographic distribution of US renewable energy employment (Panel A) compared to coal employment 

(Panel B) in 2017 

 



4 

 

The renewable energy employment (orange) is mainly concentrated in California, Florida, and 

the northeast US as these areas have counties that have over 2,000 FTE in 2017 (dark orange). 

Coal employment (purple) is mainly concentrated in the Appalachian region, with pockets in 

Wyoming, Illinois, and Alabama having over 800 FTE in 2017 (dark purple). This figure shows 

that areas that have significant coal-related employment have a dearth of renewable energy 

employment, which is a concern for the distributional justice aspect of the clean energy 

transition. This disconnect may be due to a lack of renewable energy resources, political/cultural 

factors, or a lack of incentivizing policies for renewable energy. 

1.2 Policy Intervention in the Energy Transition 

 Public interventions have the potential to address these distributional justice concerns and 

ease the employment burden felt by these frontline communities. Carley & Konisky (2020) 

discuss the following five types of efforts to address the disparities related to the clean energy 

transition: 

1) Workforce and economic diversification programs, 

2) Energy assistance and weatherization programs, 

3) Expansion of energy technology access, 

4) Collective action initiatives, 

5) and new business development. 

This list, though not exhaustive, helps frame the discussion around what will be needed to build 

adaptive capacity of frontline communities.  

 Historically, in times of sustained high unemployment, such as the Great Recession or 

Great Depression, policymakers have enacted programs to create jobs and invest in the nation’s 

infrastructure. The American Recovery and Reinvestment Act of 2009 (ARRA), for example, 
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devoted approximately $90 billion to energy projects to stimulate the economy and create jobs 

after the Great Recession (Carley, 2016). Similarly, the New Deal bolstered our nation’s 

infrastructure while stimulating the economy and creating jobs after the Great Depression. 

Seeing as the negative employment impacts from the clean energy transition are much more 

localized, geographically targeted policy instruments are likely more prudent to address these 

distributional employment disparities. Examples of general targeted interventions include state 

enterprise zones, federal empowerment zones, and federal enterprise community programs. 

These programs use subsidies and tax credits to encourage employment development in 

disadvantaged labor markets and have been found to have positive and statistically significant 

impacts on the unemployment rate, poverty rate, wage and salary income, and employment (Ham 

et al., 2011). These programs, however, are not specific to energy or the energy transition. 

These large federal investments in infrastructure have been rare in recent history, but two 

pieces of recent legislation will quickly change the federal infrastructure and energy policy 

landscape: the Infrastructure Investment and Jobs Act of 2021 and the Inflation Reduction Act of 

2022. Prior to the passage of these bills, there was a lack of comprehensive federal energy policy 

(Byrne et al., 2007; Pischke et al., 2019). As a result, state and local governments implemented a 

variety of policy instruments meant to accelerate the clean energy transition by diversifying, 

decarbonizing, and decentralizing their electricity markets (Carley & Browne, 2013; Rabe, 

2008). Examples of these renewable energy policies are subsidy programs, tax incentives, 

performance-based incentives, industry recruitment/support, Renewable Portfolio Standards 

(RPSs), and net metering (Abolhosseini & Heshmati, 2014; Menz, 2005). The following section 

will describe these six common types of renewable energy policies. 
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1.3 Description of Renewable Energy Policies 

 Subsidy Programs. Broadly speaking, subsidy programs are grants, rebates, or loans that 

help in the financing of residential, commercial, and community-scale renewable energy 

deployment, which can have high initial costs (Lantz, 2010). Each of these types of subsidies 

(grants, rebates, and loans) have similar goals, but slightly different mechanisms. Grants, which 

are usually competitive and must be applied for, are designed to lower the costs of eligible 

renewable energy systems or equipment by providing direct funds or discounts. Rebates, on the 

other hand, provide a refund from the cost of new renewable energy installations, and the 

amounts are usually based on the installed capacity of a system (Lantz & Doris, 2009). 

Renewable energy system loan programs often provide long-term, fixed rate loans and reduced 

consumer-transaction costs when compared to traditional lending. Loans can make investment in 

renewable energy projects more attractive by reducing up-front costs and lengthening the period 

over which installation costs are paid. Another type of subsidy program that is important to note 

is Property Assessed Clean Energy (PACE) financing, which allows property owners to finance 

renewable energy projects as a tax assessment on their property. These types of subsidy 

programs can incentivize increased renewable energy development, but are most effective as one 

element of a comprehensive renewable energy policy approach (Lantz, 2010). 

 Tax Incentives. Tax incentives, specifically at the state- and local-levels, can take 

different forms and target different entities. The forms of incentives include tax exemptions, tax 

deductions, and tax credits. Target entities can be corporations, individuals, property, and sales. 

The incentives can also be tied to investment, job creation, or research and development. A 

drawback of these policy instruments is that they are often tied to state and local government 

budgets, which can be fragile, especially in times of economic downturn. Additionally, tax 
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incentives are often implemented in short periods of one- or two-years, which can lead to 

uncertainty about their availability. A benefit, on the other hand, is that they can be tailored to 

unique regional economic conditions and policy goals that promote renewable energy job 

creation (Garciano, 2010).  

 Performance-Based Incentives. Performance-based incentives (PBIs), also known as 

production-based incentives, award payment based on actual electricity produced from a 

qualifying renewable energy resource. These incentives are distinguished from capacity-based 

incentives, where payment is awarded based on installed capacity. Feed-in-tariffs are a popular 

type of PBI that provide fixed prices for the purchase of electricity that is generated from a 

qualifying renewable resource (Couture & Cory, 2009). These programs have been found to 

foster more rapid renewable energy project development, as they increase investor security by 

guaranteeing a reasonable rate of return (Butler & Neuhoff, 2008). One drawback of these 

policies, however, is that they do not address the high upfront costs of renewable energy systems, 

which is a common barrier to renewable energy projects. PBIs are used more commonly 

internationally than they are in the US. 

 Industry Recruitment/Support. In the hopes of promoting economic development and 

creating jobs, some jurisdictions employ industry recruitment/support policies targeted towards 

renewable energy industries (Doris et al., 2009). These programs are usually a combination of 

tax credits, tax exemptions, and grants, and they are meant to support industries in their early 

years. In most cases, the industry recruitment/support policies are temporary in the hopes that a 

given renewable energy industry will become self-sufficient within a certain number of years 

(Yusuf & Neill, 2013). 
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 Renewable Portfolio Standards. The most studied of the renewable energy policy 

instruments, renewable portfolio standards require a certain percentage of a state’s electricity 

generation to come from renewable energy sources by a target year (Carley, 2009). In their study 

on the impacts of RPSs on the green economies of states, Bowen et al. (2013) highlight four key 

attributes of the RPS: presence, duration, stringency, and increments. In addition to these 

attributes, RPSs differ in what energy sources they decide to qualify as “renewable.” For 

example, Indiana includes “clean coal” technology as one of the energy sources that can qualify 

for their Clean Portfolio Standard Goal. They define clean coal technology as one that “directly 

or indirectly reduces airborne emissions of sulfur or nitrogen based pollutants associated with the 

combustion or use of coal” (DSIRE, 2022). Barbose et al. (2016a) point out that RPSs are not the 

most cost-effective way to reduce GHG emissions. The most cost-effective way would be to 

“internalize externalities” by pricing heavy GHG emitting activities with a carbon tax or cap-

and-trade system. Finally, RPSs have been found to have a significant and positive effect on in-

state renewable energy development, their primary policy goal (Yin & Powers, 2010). 

 Net Metering. Net metering is an electricity policy that allows utility customers to sell 

excess generated electricity back to the grid for retail price (Poullikkas et al., 2013). Most often 

used in small, distributed PV (photovoltaic) installations, this policy has the potential to benefit a 

utility, the utility customer, and the community at large. Utilities benefit by gaining additional 

capacity in their service territory paid for by their customers, utility customers benefit by 

lowering their utility bills, and communities benefit from additional business and employment 

opportunities. Net metering distinguishes itself from other renewable energy policies in the 

financing mechanism. The cost is passed to the utility companies, which can be increasingly 

important in times when state legislatures have tightening budgets (Stoutenborough & Beverlin, 
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2008). One potential concern for net metering policies is that they could impact the bottom lines 

of utility companies as distributed PV generation makes up more of the electricity generation in a 

jurisdiction. Another concern is that net metering can represent a subsidy from one group of 

consumers (consumers that do not generate electricity) to another group of consumers 

(consumers that generate electricity) without the approval of the former group.  

 Each of these renewable energy policies has the potential to influence renewable energy 

employment in their given jurisdictions; however, research into the extent of these policy 

impacts is lacking. To inform future policy formulation and implementation these employment 

impacts must be better understood. 

1.4 Research Questions 

 As policymakers weigh which renewable energy policies to choose to incentivize the 

clean energy transition (if any), it is of paramount importance that they understand the impacts 

they may have on employment. This study aims to address the following research questions: 

1) Which renewable energy policies (at the state- and local-levels) have created the most direct 

renewable energy employment from 2001 to 2017? 

2) Do these policies have the potential to create jobs in jurisdictions with high unemployment 

and jurisdictions with high coal-related employment? 

 The first research question is focused on the retrospective comparison of job creation 

among renewable energy policies. Critically, this question is only focused on gross job creation 

in renewable energy industries. It does not consider economy-wide net employment impacts 

from these policies. The second question is more focused on the factors that may influence the 

employment in renewable energy industries. The answers to this question may be especially 
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crucial for communities that are suffering high unemployment or are expecting job losses in 

traditional fossil-fuel industries. 
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Chapter 2: Evaluating County-Level Direct Renewable Energy Job Growth Due to 

Renewable Energy Policies 

2.1 Introduction 

 The equal geographic distribution of employment benefits and burdens will be a key 

aspect of a just transition to a clean energy infrastructure. Currently, there is a disconnect 

between areas that are likely to lose employment in fossil fuel industries and areas that are likely 

to gain renewable energy employment (Figure 1). Several policy interventions have the potential 

to both accelerate the clean energy transition and create employment opportunities in renewable 

energy industries (Pollin et al., 2009). Among these are subsidy programs, tax incentives, 

performance-based incentives, industry recruitment/support, RPSs, and net metering. The 

employment impacts from these policies can be categorized as direct, indirect, or induced 

(Cameron & van der Zwaan, 2015). Direct employment is related to core activities such as 

construction, site development, installation, and operation and maintenance (O&M); indirect 

employment is related to the supply chain and support of the renewable energy industry at a 

secondary-level; and induced employment arises from the economic activities of direct and 

indirect employees, shareholders, and governments (via expenditures and associated tax 

revenues). 

There has been extensive study on forecasting employment impacts of renewable energy 

policies using Computable General Equilibrium (CGE) models (Bohlmann et al., 2019; Mu et 

al., 2018), Input-Output (I-O) models (Bae & Dall’erba, 2016; Markaki et al., 2013), and 

analytical models (Wei et al., 2010). Computable general equilibrium models have the benefit of 

being able to account for direct, indirect, and induced employment impacts, but have 

significantly greater data and modeling requirements (Berck & Hoffmann, 2002). Input-Output 
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models can account for both direct and indirect employment impacts but are limited due to their 

dependence on static coefficients (Lambert & Silva, 2012). Analytical models only account for 

direct employment impacts but are usually more transparent and easily understood than the other 

models. Models forecasting the employment impacts from renewable energy policies are useful 

for policymakers; however, the results of the studies are difficult to compare due to differing 

assumptions, system model borders, and modeling approaches (Meyer & Sommer, 2016). 

In addition to forecasting employment impacts, it is important to evaluate which 

renewable energy policies have successfully created renewable energy jobs in the past, and the 

extent of that job creation. That being said, retrospective studies are far less common in the 

literature, and most studies focus only on the employment impacts of RPSs rather than studying 

impacts of several policies. Carley (2009) in her investigation into the impact of RPSs on the 

percentage of renewable energy electricity generation across states uses a subsidy index and a tax 

incentive index (in addition to RPS presence). This number of renewable energy policy variables 

(3) used in the same model is the most that I have found to date, but the study was focused on 

electricity generation rather than employment. Yi (2013) finds that both state and local clean 

energy policies have positive and statistically significant impacts on green jobs. His study 

utilizes an index of state-level clean energy policies to evaluate state-level action and 

International Council for Local Environmental Initiatives (ICLEI) membership to evaluate local 

action. Bowen et al. (2013) find that the presence of RPSs have no discernable effect on green 

job growth; however, their presence will help create green businesses if they are allowed to 

persist for several years. Barbose et al. (2016) find that renewable energy used to meet 2013 RPS 

compliance obligations is estimated to have supported nearly 200,000 US-based gross jobs. 
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 To date, the analysis in this work represents a unique addition to this important field of 

study. First, this model allows for the direct comparison of the renewable energy employment 

impacts of eight different renewable energy policies. Additionally, the dataset used is more 

geographically resolved (by county rather than by state or Metropolitan Statistical Area (MSA)) 

and over a longer period (17 years) than previous studies of employment impacts of renewable 

energy policy instruments. This longitudinal dataset allows for the study of short-, medium-, and 

long-term employment impacts. Furthermore, to the best of our knowledge it is the first study to 

utilize both propensity scoring and fixed effects (FE) regression in concert to evaluate renewable 

energy employment. These methods have been used together in the fields of urban economics 

(O’Keefe, 2004), medicine (Mousteri et al., 2020), and education (Kvande et al., 2019) to 

addresses potential selection bias that could be present in models created alone. 

 This study evaluates and compares the direct renewable energy employment impacts of 

policies that incentivize the clean energy transition. Specifically, I hope to answer the question of 

which renewable energy policies (at the state-and local-levels) have created the most direct 

renewable energy employment from 2001 to 2017? 

2.2 Methods 

In this analysis, I evaluate different state- and local-level renewable energy policies to 

understand which has been responsible for the most direct renewable energy jobs. First, I 

collected county-level data on employment, renewable energy policies, and several other related 

control variables from 2001 to 2017. Then, I utilized FE regression models to evaluate and 

compare the direct employment impacts that are associated with renewable energy policies. 

Next, I calculated propensity scores and incorporated them into the FE models to address 
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potential endogeneity. Finally, I interacted certain variables in our models to further understand 

their joint impact on county-level direct renewable energy employment. 

2.2.1 Data Collection 

To address the research question, I collected data from a variety of private and 

government sources. 

Employment Data. The employment data used in the models is from the IMPact analysis 

for PLANning (IMPLAN) tool. This resource is a leading model for economic impact analysis 

(Bae & Dall’erba, 2016), and provides county-level employment data for 536 economic sectors 

(IMPLAN, 2018). I chose IMPLAN sectors from the 536-sector scheme to represent county-

level direct renewable energy employment, the primary dependent variable in the analyses. The 

sectors I chose were 41, 44, 45, 46, 47, 48 representing electricity generation from renewable 

sources (hydroelectric, solar, wind, geothermal, biomass, and tidal). Sectors 49 and 54 were also 

included representing electricity transmission and power plant construction, respectively. I omit 

sector 41 (electricity generation from hydroelectric) in some models as hydroelectric renewable 

energy is excluded from several renewable energy policies (Carley et al., 2017), and its 

employment trend is different than the other renewable energy generation sectors (Appendix A). 

I also created coal employment and natural gas employment variables to investigate their impact 

on direct county-level renewable energy employment. The coal employment variable is the 

aggregate of employment in the coal mining (22) and electricity generation from fossil fuels (42) 

sectors. The natural gas employment industry is an aggregate of employment in the natural gas 

and crude petroleum extraction (20), natural gas liquids extraction (21), drilling oil and gas wells 

(37), support for oil and gas activities (38), and natural gas distribution (50) sectors. Detailed 
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information on which IMPLAN industry sectors I aggregated to make each of the employment 

variables can be found in Appendix A. 

Renewable Energy Policy Data. The policy data used in the analysis is from the 

Database of State Incentives for Renewables and Energy Efficiency, or DSIRE (DSIRE, 2022). 

This database has policies at several different geographic levels including the federal-, state-, 

county-, city-, utility-, and ZIP code-level. To get county-level policy data, I assigned state-level 

programs to all counties within a state, while the city, utility, and ZIP code programs were 

assigned to all counties that fall at least partially within those jurisdictions. I selected 18 

programs as the most relevant to the transition to renewable energy, and I aggregated them into 

eight categories: (1) subsidy programs; (2) corporate, (3) personal, and (4) other tax incentives; 

(5) performance-based incentives; (6) industry recruitment/support; (7) renewable portfolio 

standards; and (8) net metering. Figure 2 shows the count of programs included in this study 

separated by type and implementing sector (state, utility, or local). 

 

Figure 2: Programs separated by type and implementing sector.  

Blue bars represent programs passed at the state level, orange bars represent programs passed at the utility level, 

and green bars represent programs passed at the local level. 
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Subsidy programs have the most programs of the eight types, while net metering is the 

least common. Noteworthy, most of these programs included in the models are passed at the 

state-level (blue bar). The program choices were based on previous research into renewable 

energy policy using the DSIRE database (Menz & Vachon, 2006; Yi, 2013). Detailed 

information on which DSIRE programs were chosen and their categories can be found in 

Appendix B. 

Control Data. Control variables used in the models (e.g., county-level Gross Domestic 

Product (GDP), population, political preference, unemployment rate, solar resources, and wind 

resources) are from government and academic sources. The county-level GDP information 

comes from the U.S. Bureau of Economic Analysis (BEA), population estimates come from the 

U.S. Census Bureau, the political preference measure comes from the Massachusetts Institute of 

Technology (MIT) Election Data Science Lab, unemployment rates come from the U.S. Bureau 

of Labor Statistics (BLS), the wind resource variable comes from the Wind Integration National 

Dataset (Draxl et al., 2015), and the solar resource variable comes from the National Solar 

Radiation Data Base (Sengupta et al., 2018). I selected these control variables as they are 

consistently used as controls in the renewable energy policy literature (Bowen et al., 2013; Yi, 

2013). Level of education has been found to have a positive relationship with state-level 

adoption of green electricity policies (Menz & Vachon, 2006); however, it was not included in 

our models due to a lack of available county-level education data. One final control variable 

included in certain models is the county-level propensity score, which is calculated in the next 

section of the analysis.  

Table 1 highlights all variables, their measures, their predicted relationship to the primary 

dependent variable (non-hydro renewable energy employment) and their source. All policy 
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variables are predicted to have a positive impact on county-level direct renewable energy 

employment due to the high labor intensity of renewable electricity production. Alternatively, 

coal employment and natural gas employment are predicted to have a negative relationship to 

direct renewable energy employment due to potential lobbying against the clean energy 

transition by incumbent energy companies. The literature remains inconclusive about this 

theoretical relationship (Vachon & Menz, 2006), but considering the potential impacts of 

lobbying pushed me to make this prediction. 

Table 1. Variable names, measures, predicted relationships and sources. 

VARIABLES MEASURES 

PREDICTED 

RELATION-

SHIPS 

SOURCES 

    

Non-Hydro 

Renewable 

Energy 

Employment 

The number of non-hydroelectric direct 

renewable energy jobs in county i at time t 
N/A 

(IMPLAN, 

2018) 

Coal 

Employment 

The number of coal mining and fossil fuel 

electricity generation jobs in county i at time t 
- 

(IMPLAN, 

2018) 

Natural Gas 

Employment 

The number of natural gas jobs in county i at 

time t 
- 

(IMPLAN, 

2018) 

Net Metering 
Dummy variable representing if county i has net 

metering for renewable energy jobs at time t 
+ 

(DSIRE, 

2022) 

Renewable 

Portfolio 

Standard 

Dummy variable representing if county i has a 

renewable portfolio standard at time t 
+ 

(DSIRE, 

2022) 

Industry 

Recruitment/ 

Support 

Dummy variable representing if county i has 

industry recruitment/support present at time t 
+ 

(DSIRE, 

2022) 

Other Tax 

Incentive 

Dummy variable representing if county i has a 

sales or property tax incentive present at time t 
+ 

(DSIRE, 

2022) 

Personal Tax 

Incentive 

Dummy variable representing if county i has a 

personal tax incentive for renewable energy jobs 

at time t 

+ 
(DSIRE, 

2022) 

Performance-

based Incentive 

Dummy variable representing if county i has a 

performance-based incentive present for 

renewable energy jobs at time t 

+ 
(DSIRE, 

2022) 
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Corporate Tax 

Incentive 

Dummy variable representing if county i has a 

corporate tax incentive for renewable energy 

jobs at time t 

+ 
(DSIRE, 

2022) 

Subsidy 

Programs 

Dummy variable representing if county i has a 

subsidy program for renewable energy at time t 
+ 

(DSIRE, 

2022) 

GDP Per 

Capita 

Per capita GDP (in millions of chained 2012 

dollars) in county i at time t 
Control 

(BEA, 

2022) 

Population Population estimates in county i at time t Control 

(US 

Census 

Bureau, 

2021) 

Unemployment 

Rate 

Percent of people unemployed in county i at 

time t 
Control 

(BLS, 

2021) 

Solar Resource 
Average Direct Normal Irradiance (DNI) in 

county i 
Control 

(Sengupta 

et al., 

2018) 

Wind Resource Average wind speed at 100 meters in county i Control 
(Draxl et 

al., 2015) 

Political 

Preference 

Political party (Republican or Democrat) that 

received a greater percentage of votes than the 

other in the last presidential election in county i 

at time t 

Control 

(MIT 

Election 

Data And 

Science 

Lab, 2018) 

Propensity 

Score 

Probability of having aggressive renewable 

energy policy in county i at time t 
Control N/A 

Notes: Dependent variable: Non-Hydro Renewable Energy Employment, BLS: Bureau of Labor Statistics, BEA: 

Bureau of Economic Analysis, GDP: Gross Domestic Product. 

 

This longitudinal dataset has observations for 3,035 counties in the contiguous US from the 

years 2001 to 2017. This number of counties is less than the current total number of counties 

(3,143) due to missing data, creation of new counties, and dissolution of counties over the 

sample period. 

2.2.2 Fixed Effects (FE) Model 

I employ a FE model (Figure 3) using both time and county fixed effects as it accounts 

for potential omitted variables that are county-specific and do not vary across time, as well as 
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potential omitted variables that are year-specific and do not vary across counties. Figure 3 lists 

the factors that influence county-level direct renewable energy employment. 

 

Figure 3: Factors influencing county-level direct renewable energy employment. 

 

The FE model aims to account for all variables included in Figure 3 and is specified as 

follows: 

𝐽𝑂𝐵𝑆𝑖,𝑡 =  𝛽0 + 𝛽1𝑁𝑀𝑖,𝑡−1 +  𝛽2𝑅𝑃𝑆𝑖,𝑡−1 + 𝛽3𝐼𝑅𝑖,𝑡−1 + 𝛽4𝑃𝑇𝐼𝑖,𝑡−1 +  𝛽5𝐶𝑇𝐼𝑖,𝑡−1 +
 𝛽6𝑂𝑇𝐼𝑖,𝑡−1 +  𝛽7𝑃𝐵𝐼𝑖,𝑡−1 +  𝛽8𝑆𝑃𝑖,𝑡−1  +  𝛽9𝐺𝐷𝑃_𝑃𝐸𝑅𝑖,𝑡 +  𝛽10𝑈𝑁𝐸𝑀𝑃𝑖,𝑡 +

 𝛽11𝐶𝑂𝐴𝐿_𝐸𝑀𝑃𝑖,𝑡 + a𝑖 +  𝜆𝑡 + ɛ𝑖,𝑡  

   (1) 

 

where i is a given county, t is a given year, 𝐽𝑂𝐵𝑆𝑖,𝑡 is the dependent variable, the 𝛽 values are the 

slope coefficients for each variable, 𝛽0 is the constant, 𝑎𝑖 is the county specific intercept, 𝜆𝑡 is 
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the year specific intercept, and ɛ is the error term. The 12 variable names in Equation 1 have the 

following meanings:  

• JOBS: direct non-hydro renewable energy employment,  

• NM: presence of net metering,  

• RPS: presence of renewable portfolio standard, 

• IR: presence of industry recruitment/support,  

• PTI: presence of personal tax incentive,  

• CTI: presence of corporate tax incentive,  

• OTI: presence of other tax incentive (property or sales),  

• PBI: presence of performance-based incentive,  

• SP: presence of subsidy program, 

• GDP_PER: GDP per capita, 

• UNEMP: unemployment rate, 

• and COAL_EMP: coal employment. 

 The above equation addresses the temporal variability in the balanced panel dataset by 

lagging each of the eight renewable energy program variables by one year. This accounts for 

some of the potential policy lag that may come from the implementation of new policies in each 

county. The notation t-1 denotes that a policy was present in a given county in the year prior to 

the observed year of the dependent variable. A similar policy lag was employed by Bowen et al. 

(2013) in their analysis of the influence of RPS programs on the green economies of states. I ran 

models with four different policy lag configurations (no lag, 1-year, 2-year, and 3-year) and the 

results can be found in Appendix C. 
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 The FE models presented, like most regression models using panel data, was susceptible 

to many regression-related issues such as heteroskedasticity, multicollinearity, omitted variable 

bias, and autocorrelation. Heteroskedasticity was identified in the FE model using the modified 

Wald test for heteroskedasticity (p < 0.0000). Clustered robust standard errors were used in all 

models to address this heteroskedasticity and allow for more accurate tests of coefficients’ 

statistical significance. To investigate possible multicollinearity in the FE models, I generated a 

correlation matrix of all variables (Appendix D). The only variables that had a pairwise 

correlation greater than 0.6 were coal employment and natural gas employment. To address this 

multicollinearity, the natural gas employment variable is omitted from the FE models. For more 

detailed information about the variable correlations and model specification tests see Appendix 

D. 

2.2.3 Control on Propensity Scores 

 I calculated propensity scores to address potential selection bias in the model. Selection 

bias is likely present when proper randomization cannot be achieved. In this specific study, 

selection bias may be present if counties that have high renewable energy employment are more 

likely to implement renewable energy policies, thus introducing endogeneity to regression 

models of employment. Controlling for the county-level propensity score addresses selection 

bias by calculating the likelihood of policy adoption based on general county characteristics 

(political affiliation, renewable resources, renewable energy employment). This will allow for 

the calculation of an Average Treatment Effect (ATE) for each policy that can then be compared 

(Rosenbaum & Rubin, 1983). The specific method used to incorporate the propensity scores and 

address the potential selection bias is to include the propensity scores as an independent variable 

in the FE models (Caliendo & Kopeinig, 2008). This method leads to an efficient estimate of the 
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average treatment effect. Because there are several different treatments available, I could not 

simply use the presence of treatment as a binary variable. As a result, I created an aggregation of 

all potential programs (Equation 2) to identify a variable differentiating more active counties 

from less active in each year. 

𝑡𝑜𝑡𝑎𝑙_𝑝𝑟𝑜𝑔𝑟𝑎𝑚𝑠𝑖,𝑡 =  𝑁𝑀𝑖,𝑡 +  𝑅𝑃𝑆𝑖,𝑡 + 𝐼𝑅𝑖,𝑡 +  𝑃𝑇𝐼𝑖,𝑡 +  𝐶𝑇𝐼𝑖,𝑡 +  𝑂𝑇𝐼𝑖,𝑡 + 𝑃𝐵𝐼𝑖,𝑡 +

 𝑆𝑃𝑖,𝑡  

(2) 

 The average number of total programs per county was 2.78 per year and the median 

number of programs was 3 per year, so counties with 3 or more programs present in a given year 

were called aggressive for that year (agg=1) while those with less than 3 were not aggressive 

(agg=0). Then, I had to choose a representative year to calculate the propensity scores. I chose 

2003 as it had the highest pseudo-R-squared (0.22) of the logistic regression runs for all years in 

the sample. Additionally, 2003 was a preferable choice as it is early in the panel dataset (2001-

2017), before many of the renewable energy policies were enacted and their impacts felt. The 

logistic regression model used to calculate propensity scores is shown in Equation 3: 

𝐿𝑜𝑔 (
𝑎𝑔𝑔𝑖,2003

1−𝑎𝑔𝑔𝑖,2003
) = 𝛽0 + 𝛽1𝑁𝑂𝑁𝐻𝑌𝐷𝑅𝑂_𝐸𝑀𝑃𝑖,2003 + 𝛽2𝐶𝑂𝐴𝐿_𝐸𝑀𝑃𝑖,2003 +

𝛽3𝐺𝐴𝑆_𝐸𝑀𝑃𝑖,2003 +  𝛽4𝑃𝑂𝐿𝑖,2003 + 𝛽5𝑃𝑂𝑃𝑖,2003 +  𝛽6𝑊𝐼𝑁𝐷𝑖,2003 +

𝛽7𝑆𝑂𝐿𝐴𝑅𝑖,2003 + 𝛽8𝑈𝑁𝐸𝑀𝑃𝑖,2003 +  𝛽9𝐺𝐷𝑃𝑖,2003  

(3) 

where i is a given county, 2003 is the chosen year, 𝐿𝑜𝑔 (
𝑎𝑔𝑔𝑖,2003

1−𝑎𝑔𝑔𝑖,2003
) is the dependent variable 

representing the log odds, the 𝛽 values are the slope coefficients for each variable, and 𝛽0 is the 

constant. The variable definitions are the same as those used in Equation 1. 

 This logistic model identifies the factors that influence a county being aggressive in terms 

of their renewable energy policy in the year 2003 and is used to calculate the county-level 
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propensity scores (Caliendo & Kopeinig, 2008). Equation 4 shows the updated model, and itis 

identical to Equation 1, with an additional variable, PSCORE, as a control. 

𝐽𝑂𝐵𝑆𝑖,𝑡 =  𝛽0 + 𝛽1𝑁𝑀𝑃𝑖,𝑡−1 + 𝛽2𝑅𝑃𝑆𝑖,𝑡−1 + 𝛽3𝐼𝑅𝑖,𝑡−1 +  𝛽4𝑃𝑇𝐼𝑖,𝑡−1 +  𝛽5𝐶𝑇𝐼𝑖,𝑡−1

+  𝛽6𝑂𝑇𝐼𝑖,𝑡−1 + 𝛽7𝑃𝐵𝐼𝑖,𝑡−1 +  𝛽8𝑆𝑃𝑖,𝑡−1  + 𝛽9𝐺𝐷𝑃_𝑃𝐸𝑅𝑖,𝑡

+  𝛽10𝑈𝑁𝐸𝑀𝑃𝑖,𝑡 + 𝛽11𝐶𝑂𝐴𝐿_𝐸𝑀𝑃𝑖,𝑡 + 𝛽12𝑃𝑆𝐶𝑂𝑅𝐸𝑖,𝑡 + a𝑖 +  𝜆𝑡 +  ɛ𝑖,𝑡 

   (4) 

 

The variables and symbols used in Equation 4 have the same definitions as Equation 1. 

2.2.4 Interaction Terms 

 To provide further insight on the mechanisms contributing to or impeding renewable 

energy employment growth, I incorporated several interaction terms into the FE models. These 

terms allow for the estimation of more nuanced policy interventions, such as the presence of a 

renewable energy policy given some control variable (e.g., unemployment rate or political 

affiliation). First, because the natural gas employment variable had to be removed from the FE 

models due to its high correlation with coal employment, I included the interaction of coal 

employment and natural gas employment. Next, I interacted each of the renewable energy policy 

variables to see if they were more effective or less effective in counties with high unemployment. 

Finally, I interacted the renewable energy policy variables with coal employment to see if 

renewable energy policies were more effective or less in counties with high coal employment. 

Each of these interaction terms were added to the model individually using the “hit or miss 

method” (Caliendo & Kopeinig, 2008). If the coefficient of the added interaction term was found 

to be statistically significant (at the 5% level) it remained in the model. If not, it was removed. 

2.3 Results 

2.3.1 Descriptive Statistics 

 Table 2 contains the descriptive statistics of each of the variables included in the models, 

as well as their respective units. 
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Table 2. Descriptive statistics 

VARIABLES UNITS 
DESCRIPTIVE STATISTICS 

Mean SD Min Max 

      

Non-Hydro RE Employment FTE 260.4 788.9 0 29,334 

Coal Employment FTE 63.00 263.0 0 9,944 

Natural Gas Employment FTE 325.8 2,302 0 132,581 

Net Metering Binary 0.115 0.319 0 1 

Renewable Portfolio Standard Binary 0.147 0.354 0 1 

Industry Recruitment/Support Binary 0.325 0.468 0 1 

Property Tax Incentive Binary 0.383 0.486 0 1 

Corporate Tax Incentive Binary 0.495 0.500 0 1 

Other Tax Incentive Binary 0.526 0.499 0 1 

Performance-Based Incentive Binary 0.286 0.452 0 1 

Subsidy Program Binary 0.513 0.500 0 1 

GDP 
Millions of chained 

2012 dollars 
4,814 19,133 6.311 662,419 

Population Ten thousand people 9.702 31.58 0.00400 1,009 

GDP per Capita 

Millions of chained 

2012 dollars per 

person 

0.0485 0.352 0.00772 45.66 

Unemployment Rate Annual average (%) 6.323 2.704 1.100 29.40 

Solar Resource DNI (W/m2) 5.327 0.715 3.546 7.831 

Wind Resource m/s at 100m 6.668 0.791 3.312 9.452 

Political Preference 
Binary (1=dem, 

0=rep) 
0.213 0.409 0 1 

Propensity Score Probability (unitless) 0.313 0.236 
0.00069

6 
1 

      
Note: 3,035 counties were included in this model over the 17-year period (2001-2017) meaning each variable has 

51,595 observations. Detailed variable descriptions can be found in Table 1.RE: Renewable Energy, FTE: Full 

Time Equivalent, DNI: Direct Normal Irradiance 

 

 The dependent variable in the models, non-hydro renewable energy employment, has a 

mean of 260.4 FTE jobs per county with a standard deviation of 788.9. The minimum and 

maximum values of this variable show that some counties have zero non-hydro renewable 

energy jobs, and the county with the most non-hydro renewable energy jobs in the US has nearly 

30,000 FTE. This is Harris County, Texas, home of Houston (the fourth largest city in the US by 

population and a hub of energy employment). The mean county-level coal employment (63 FTE) 

is less than non-hydro renewable energy employment while the mean natural gas employment 
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(325.8 FTE) is greater than non-hydro renewable energy employment. When looking at the eight 

binary policy variables, other tax incentives (such as property and sales tax incentives) are the 

most common (implemented in 53% of counties) while net metering is the least common 

(implemented in 11.5% of counties) from 2001 to 2017. 

 The GDP and population control variables were found to be highly correlated (see 

Appendix D). To avoid multicollinearity, I created a GDP per capita variable by taking the 

quotient of GDP and population. The units for GDP are millions of chained 2012 dollars to 

account for inflation over the 17-year dataset. The maximum value of the GDP per capita 

variable, remarkably, is 45.6 million chained 2012 dollars per person. This observation comes 

from Loving County, Texas in 2017 which had a relatively high GDP and a very small 

population. In that year, Loving County had the 447th highest GDP and the 2nd lowest population 

of all US counties. The county-level political preference is a binary variable showing which 

party received a greater percent of the popular vote in the last presidential election with 0 

representing Republican and 1 representing Democrat. The mean (0.213) highlights the fact that 

a vast majority of counties had a greater percentage vote Republican than Democrat from 2001 

to 2017. 

2.3.2 Fixed Effects (FE) Model Results 

 The results of the FE models are mixed in their support of the hypotheses discussed 

earlier, as presented in Table 3.  

Table 3. FE model results 

Dependent variable: Non-Hydro Renewable Energy Employment 

VARIABLES 

COEFFICIENTS 

County and Time FE County and Time FE 

w/ Policy Lag 

   

Net Metering -8.323 -9.065 

 (25.43) (26.81) 

Renewable Portfolio Standard 48.08** 61.43*** 



26 

 

 (20.74) (22.34) 

Industry Recruitment/Support 16.47 13.23 

 (10.25) (10.26) 

Personal Tax Incentive -49.25*** -47.45*** 

 (8.184) (7.944) 

Corporate Tax Incentive 26.43** 22.95** 

 (10.80) (10.67) 

Other Tax Incentive 5.138 5.813 

 (8.352) (8.281) 

Performance-Based Incentive 33.33*** 37.53*** 

 (7.177) (8.239) 

Subsidy Program -15.28** -13.22** 

 (7.573) (6.716) 

Coal Employment -0.304*** -0.323*** 

 (0.116) (0.123) 

GDP per Capita -4.610*** -4.399*** 

 (1.321) (1.285) 

Unemployment Rate -5.971*** -5.905*** 

 (1.507) (1.589) 

Political Preference 115.3*** 115.0*** 

 (34.46) (34.31) 

Constant 229.1*** 232.8*** 

 (13.15) (13.98) 

   

Observations 51,595 48,560 

R-squared (within) 0.101 0.106 

Number of Counties 3,035 3,035 

County FE Yes Yes 

Time FE Yes Yes 

One-Year Policy Lag No Yes 
Note: The model with the 1-year policy lag omits the observations from 2001 and has 3,035 less observations as a 

result. Clustered robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

 

Of the eight policy variables included in the models, three were consistently found to 

have positive and statistically significant (at the 5% level) relationships with direct county-level 

non-hydroelectric renewable energy employment. RPSs had the greatest positive coefficient 

central values (48 to 61 FTE), followed by performance-based incentives (33 to 38 FTE), and 

corporate tax incentives (23 to 26 FTE). It is important to note that these results are only 

comparing the central values, and that there is overlap among these rankings of coefficients 

when the clustered robust standard errors are accounted for. The RPS coefficient interpretation 
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for the non-policy lag model, for example, is that counties that have an RPS present have, on 

average, 48 more direct non-hydroelectric renewable energy FTE jobs than counties without an 

RPS present, ceteris paribus. Not all policy variables were found to have positive relationships 

with renewable energy employment. The coefficients of four policy variables (net metering, 

industry recruitment/support, other tax incentives, and subsidy programs) were statistically 

insignificant. As a result, no conclusions can be drawn from these coefficients. Personal tax 

incentive policies have a consistent negative and statistically significant coefficient central value 

across both models (-47 to -49). 

The three control variables had statistically significant coefficients in the model with 

GDP per capita and unemployment rate associated with less non-hydro renewable energy jobs 

and democratic political preference associated with more non-hydro renewable energy jobs, 

holding all else constant. The inclusion of the one-year policy lag did not change the direction or 

statistical significance of any of the coefficients; however, the magnitude of the coefficients 

changed slightly as well as the within R-squared value. The coefficient of RPSs, for example, 

increased by 13 FTE upon the inclusion of the one-year policy lag. The within R-squared 

increased from 0.101 to 0.106 indicating a slight increase in the amount of variation accounted 

for in the model. 

The full results of the models including the year coefficients can be found in Appendix E. 

Additionally, Appendix F contains results of FE models using different dependent variables 

(construction, generation, and non-hydro generation). 

2.3.3 Control on Propensity Scores Results 

After running the logistic regression to identify the factors influencing adoption of 

aggressive renewable energy policy and calculating the associated propensity scores for each 
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county in each year, the same fixed effects regression was run with the propensity score included 

as a control variable. Results of the logistic regression can be found in Appendix G, and the 

calculated propensity scores averaged across the 17-year dataset can be seen in Figure 4. 

 

Figure 4: Average calculated propensity score by county 

 

 The higher probabilities of aggressive renewable energy policy (propensity score) in 

Figure 4 are shown using darker shades of blue. Most of the darker blue is concentrated in the 

Great Plains region and the southwest US, which highlights the importance of wind and solar 

resources in the calculation of propensity score. Results of the logistic regression can be found in 

Appendix G. Table 4 shows the results of the FE model including the propensity score control 

compared to the same model without it. 

Table 4. FE model results with propensity score control 

Dependent variable: Non-Hydro Renewable Energy Employment 

 COEFFICIENTS 

VARIABLES County and Time FE County and Time FE 

w/ Propensity Score 
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Net Metering -9.065 -19.00 

 (26.81) (19.91) 

Renewable Portfolio Standard 61.43*** 37.20** 

 (22.34) (17.73) 

Industry Recruitment/Support 13.23 20.84** 

 (10.26) (9.274) 

Personal Tax Incentive -47.45*** -25.63*** 

 (7.944) (6.311) 

Corporate Tax Incentive 22.95** 17.81** 

 (10.67) (8.235) 

Other Tax Incentive 5.813 2.380 

 (8.281) (7.902) 

Performance-Based Incentive 37.53*** 33.14*** 

 (8.239) (7.217) 

Subsidy Program -13.22** 1.244 

 (6.716) (6.141) 

Coal Employment -0.323*** -0.589*** 

 (0.123) (0.103) 

GDP per Capita -4.399*** -3.900 

 (1.285) (3.524) 

Unemployment Rate -5.905*** -51.38*** 

 (1.589) (5.439) 

Political Preference 115.0*** 175.7*** 

 (34.31) (33.39) 

Propensity Score  3,410*** 

  (408.4) 

Constant 232.8*** -511.6*** 

 (13.98) (91.43) 

   

Observations 48,560 48,560 

R-squared (within) 0.106 0.249 

Number of Counties 3,035 3,035 

County FE Yes Yes 

Time FE Yes Yes 

One-Year Policy Lag Yes Yes 
Note: Both models have a one-year policy lag, which omits the observations from 2001 and has 3,035 less observations 

as a result. Clustered robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

 

 With the propensity score added as a control to the FE model, four of the eight policy 

variables have positive and statistically significant coefficients. These policies coefficient central 

values, in order from greatest to least, are renewable portfolio standards (37.2 FTE), 

performance-based incentives (33.1 FTE), industry recruitment/support (20.8 FTE), and 
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corporate tax incentives (17.8 FTE). The coefficient on the propensity score variable (3,410 

FTE) is statistically significant at the 0.01% level, but its interpretation does not have practical 

significance, as it represents a probability of being aggressive in terms of renewable energy 

policy. Personal tax incentives have a negative and statistically significant relationship with non-

hydro renewable energy employment in both models, but the inclusion of the propensity score 

decreases the coefficient central value from -47.5 to -25.6 FTE. The sign and statistical 

significance of the control variables remain consistent across the two models, except for the GDP 

per capita variable which loses its statistical significance upon the addition of propensity score as 

an independent variable. 

2.3.4 Interaction Terms Results 

 To further my analysis of some of the more nuanced impacts found in my models, I 

created a series of interaction terms to assess their direction and statistical significance. Table 5 

shows the results of the models including interaction terms. 

Table 5. FE model results with interaction terms 

Dependent variable: Non-Hydro Renewable Energy Employment 

VARIABLES 

COEFFICIENTS 

County and Time FE w/ 

Propensity Score 

County and Time FE w/ 

Propensity Score and 

Interaction Terms 

   

Net Metering -19.00 47.06* 

 (19.91) (26.74) 

Renewable Portfolio Standard 37.20** 45.78*** 

 (17.73) (16.26) 

Industry Recruitment/Support 20.84** 82.26*** 

 (9.274) (13.96) 

Personal Tax Incentive -25.63*** 18.90 

 (6.311) (12.57) 

Corporate Tax Incentive 17.81** -1.832 

 (8.235) (8.940) 

Other Tax Incentive 2.380 -5.853 

 (7.902) (4.546) 

Performance-Based Incentive 33.14*** 19.39*** 

 (7.217) (5.282) 
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Subsidy Programs 1.244 3.057 

 (6.141) (4.650) 

Coal Employment -0.589*** -0.635*** 

 (0.103) (0.104) 

Natural Gas Employment  0.148** 

  (0.0749) 

Coal Employment # Natural 

Gas Employment 

 4.45e-05*** 

 (1.21e-05) 

Net Metering 

# Unemployment 

 -8.311*** 

 (2.093) 

Industry Recruitment/Support  -6.840*** 

# Unemployment  (1.195) 

Personal Tax Incentive  -2.882** 

# Unemployment  (1.171) 

Personal Tax Incentive  -0.186** 

# Coal Employment  (0.0915) 

Corporate Tax Incentive  0.226* 

# Coal Employment  (0.117) 

Performance-Based Incentive  0.269*** 

# Coal Employment  (0.102) 

GDP per Capita -3.900 -4.851 

 (3.524) (4.302) 

Unemployment Rate -51.38*** -26.93*** 

 (5.439) (10.41) 

Political Preference 175.7*** 125.5*** 

 (33.39) (14.09) 

Propensity Score 3,410*** 2,185*** 

 (408.4) (694.3) 

 (11.17) (7.093) 

Constant -511.6*** -315.2** 

 (91.43) (130.5) 

   

Observations 48,560 51,595 

R-squared (within) 0.249 0.445 

Number of Counties 3,035 3,035 

County FE Yes Yes 

Time FE Yes Yes 

One-Year Policy Lag Yes No 
Note: Clustered robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

 

 

 The first interaction term included in the FE models was the interaction of coal 

employment and natural gas employment. This was included as an interaction term because the 

natural gas employment variable was omitted from the other models due to multicollinearity. By 
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interacting the two variables that are highly correlated, I avoid this multicollinearity issue. The 

interaction term has a negative and statistically significant coefficient, but its magnitude is small 

(0.0000455). This makes sense as the variable represents the product of coal and natural gas 

employment. Because it represents so many jobs, the marginal impact of a single job is far less. 

 The interaction of unemployment rate on each policy variable brought three additional 

significant variables into the model. The three policies that were found to have significant 

interaction terms with unemployment rate were net metering, industry recruitment/support, and 

personal tax incentives. Each of these has a negative coefficient.  

 Finally, the interaction of coal employment on each of the policy variables produced 

three statistically significant coefficients of interaction terms, two positives and one negative. 

The two positive coefficients were on the interactions with corporate tax incentives and 

performance-based incentives, while the negative coefficient was the interaction of coal 

employment with personal tax incentives. 

 The introduction of these seven statistically significant interaction terms into the model 

drastically changes the within R-squared and the coefficients of independent variables. The 

within R-squared increases from 0.249 in the model with propensity score control to 0.445 in the 

model that includes the interaction terms. The coefficient central value on industry 

recruitment/support policies, for example, quadruples from 20.84 to 82.26 FTE. The only three 

interaction terms between unemployment rate and renewable energy policies that are statistically 

significant have negative coefficients. 
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2.4 Discussion 

2.4.1 Comparison of Policy Instruments 

 The hypotheses of a positive relationship between the renewable energy policies and 

renewable energy employment at the county-level were partially supported by the results of the 

analysis. The FE model including the propensity score control (Table 4) showed four renewable 

energy policies with positive impacts on county-level direct non-hydro renewable energy 

employment from 2001 to 2017. In order from largest impact to smallest, the policies with that 

led to renewable energy job creation were: RPSs, PBIs, industry recruitment and support, and 

corporate tax incentives. Net metering; other tax incentives; and grants, rebates, or loans were 

not found to have a significant impact on the dependent variable. Personal tax incentives were 

the only policy found to consistently have a negative and statistically significant relationship 

with county-level direct non-hydro renewable energy employment. These results provide an 

answer to my primary research question, but there are technical, financial, and political factors 

that must be considered by policymakers prior to implementation of these policies. 

 The primary technical factors that should influence renewable policy adoption are 

renewable energy potential and the existing infrastructure. If renewable energy potential is 

exceptionally rich in a given jurisdiction, policymakers may not need to incentivize renewable 

production. On the other hand, in jurisdictions with poor renewable energy potential, focus may 

need to shift to stimulating employment in other sectors. Financial factors will need to play a 

significant role in designing policy to accelerate the clean energy transition. The costs of RPSs, 

for example, are primarily passed down to the electricity consumers and can lead to increases in 

electricity prices (Palmer & Burtraw, 2005). Tax incentives are primarily funded through federal, 

state, or local government budgets, which can become exceptionally tight during times of 
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economic downturn. Additionally, federal tax credits related to the clean energy transition have 

been found to disproportionately benefit higher income quintiles, and are likely to be less 

attractive on distributional grounds than market mechanisms to reduce GHGs (Borenstein & 

Davis, 2016). Lastly, political and cultural factors can come into play when renewable energy is 

simply unpopular in a given jurisdiction and implementing one of these policies would not be 

realistic. When these factors preclude a jurisdiction from passing one of the renewable energy 

policies studied, a county has the potential to capitalize on other parts of the clean energy 

transition. For example, energy efficiency, grid modernization, environmental remediation, and 

manufacturing of renewable energy components are all areas that can be capitalized on (Pollin & 

Callaci, 2019).  

2.4.2 Importance of Controlling for Propensity Score 

 The inclusion of the propensity score as a control vastly changes the FE model (Table 4). 

First, it more than doubles the within R-squared value of the original model (0.106 to 0.249). 

Also, the coefficient for the propensity score is statistically significant at the 1% level. Finally, 

its inclusion caused the industry recruitment and support policy to change from being statistically 

insignificant to being significant at the 5% level. These changes show that the inclusion of the 

propensity score control led to a model that accounts for more of the variability in the dependent 

variable and has more accurate coefficients than a FE model by itself. Specifically, the inclusion 

of the propensity score reduced the magnitude of impact of each of the renewable energy policy 

variables that were found to be significant in the FE model. This fact shows that lone FE models 

can exaggerate renewable energy employment impacts from renewable energy policies. 

Furthermore, it reinforces the need for selection bias to be addressed in regression-based 
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analyses of policy impacts, whether they be the use of PSM, controlling for propensity scores, 

weighting by propensity scores, or other methods.  

2.4.3 Implications of Interaction Terms 

 Of the 17 interaction terms tested, seven were statistically significant and left in the 

model. Three of these were interactions of unemployment rate with policy variables, three were 

interactions of coal employment with policy variables, and one was the interaction of coal 

employment and natural gas employment. The coal and natural gas interaction term is key as it 

allows for the inclusion of natural gas employment, which was removed from other models to its 

high correlation with coal employment.  

 Interacting policies with unemployment rate is important as jurisdictions dealing with 

high unemployment may be especially interested in passing renewable energy policies to 

stimulate the economy and create new jobs. All three statistically significant coefficients on the 

interaction terms between unemployment rate and the policy variables were negative (net 

metering, industry recruitment/support, and personal tax incentives). This means that, on 

average, these policies have been counterproductive and are associated with a loss of non-hydro 

renewable energy employment in counties with high unemployment, ceteris paribus. The cause 

of these negative relationships is unknown; however, unemployment is a complex issue that 

impacts many facets of the economy. Therefore, it is believable that higher unemployment rates 

change the impacts of these renewable energy policies. These results show that a jurisdiction 

dealing with high unemployment should not look to these three incentivizing renewable energy 

policies. 

 The interacting of the policy variables and coal employment produced three statistically 

significant coefficients. Performance-based incentives and corporate tax incentives are associated 
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with an increase in non-hydro renewable energy employment in counties with high coal 

employment. Property tax incentives, on the other hand, are counterproductive and associated 

with a decrease in renewable energy employment in areas of high coal employment. These 

results have especially poignant applications to the distributional justice aspects of the clean 

energy transition. Specifically, they show that even in jurisdictions with high coal employment, 

corporate tax incentives and performance-based incentives are viable policy options to stimulate 

employment growth. As coal-related employment declines in the coming years, non-hydro 

renewable energy employment can potentially be stimulated by the presence of these two policy 

instruments. Personal tax incentives do not show the same potential, as they have negative 

interactions with both coal employment and unemployment. 

2.5 Conclusion 

Although the results of the models seemingly provide a sufficient answer to the primary 

research question, there are several limitations to this study that need to be discussed. The first 

limitation of the model specification is that it does not account for policy heterogeneity. The use 

of binary variables to show the presence or absence of a policy each year is a crude 

representation of the policy environment and is ignoring key differences in policy designs across 

jurisdictions. A potential solution to this limitation that was not used for this study would be to 

add stringency and duration measures to the program variables rather than simply using binary 

variables. This technique is used in several studies looking into employment impacts of 

renewable portfolio standards (Carley, 2009; Wiser et al., 2008; Yin & Powers, 2010). Another 

issue facing the model is the potential for spillover impacts due to employees commuting to 

work from other counties; however, most policies were passed at the state level so this may only 
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be a significant factor near state lines. A potential solution would be to run the same model at the 

MSA level to observe employment impacts in a larger geographic area.  

The policy variables included in this study were taken from the DSIRE database which 

holds records of over 5,000 US incentives and regulations at different levels of government 

(federal, state, city, county, zip code). Of these policies, only 20 percent have documented start 

dates, and even less have documented end dates. This lack of temporal information led to the 

exclusion of several thousand policies from my analysis, which was a significant limitation of 

the study. Further information about the filtering process of policy variables and the number of 

programs that were included in the models can be found in Appendix B. 

An additional limitation of this study can be seen in the dependent variable: county-level 

direct non-hydro renewable energy employment. This variable is an aggregation of seven 

IMPLAN industry codes, and it is likely picking up jobs that are not strictly renewable energy. 

This is a common limitation in many renewable energy employment-related studies, as jobs are 

rarely coded specifically by energy source. IMPLAN sector 54 is coded as construction of new 

power and communication structures but does not specify between construction of fossil-fuel 

power structures and renewable power structures (see Appendix A). This inclusion of non-

renewable energy employment in the dependent variable likely influenced results, but data that is 

more disaggregated is not available. 

The final limitation of this study is that it only accounts for part of the employment 

impacts from these policy instruments. This study is only focused on gross job impacts, meaning 

it does not factor in potential job losses in other sectors that could be influenced by these 

policies. Additionally, this study is only focused on direct employment, meaning indirect and 

induced employment that may be impacted by these policies is not accounted for. In order to 
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account for indirect and induced impacts, a CGE model is preferred, but these models have 

significantly greater data and computational requirements than FE models. 

 The potential job creation from the clean energy transition, specifically renewable energy 

generation, is an often-debated topic among policymakers and researchers. Most studies only 

account for a few policies and are focused on projecting their impacts into the future. This study, 

in contrast, compares eight different types of renewable energy policies and is focused on 

evaluating the county-level job growth associated with these policies that took place from 2001 

to 2017. Additionally, the calculation and control for propensity scores in this work allows for 

the estimation of coefficients that are more accurate than those in models that do not account for 

potential selection bias. Finally, I included statistically significant interaction terms in the models 

between unemployment rate and the policy variables and coal mining employment and the policy 

variables. These interaction terms illuminated more nuanced policy impacts and provided 

additional guidance into the potential factors that can influence employment impacts from these 

policy instruments.  

 Overall, the three renewable energy policies that were found to have positive and 

statistically significant relationships with non-hydro renewable energy from 2001 to 2017 were 

industry recruitment/support (68.3 – 96.2 FTE), renewable portfolio standards (29.5 – 62.0 FTE), 

and performance-based incentives (14.1 – 24.7 FTE). 
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Chapter 3: Conclusions and Future Work 

 The transition to a clean energy infrastructure will have a wide-ranging impact on US 

communities, families, and individuals. Some will enjoy the benefits and opportunities of this 

transition, while others are likely to bear much of the burden. A policy problem facing our 

federal, state, and local governments is how to equitably distribute these benefits and burdens. 

Employment is an often-debated aspect of the clean energy transition among both policymakers 

and scholars, yet the employment impacts from renewable energy policies are not fully 

understood. This work contributes to a growing literature studying the just transition by 

comparing employment impacts from more renewable energy policy instruments than have 

previously been studied, by controlling for selection bias (using propensity score control), and by 

investigating the interactions between renewable energy policies and key county-level factors. 

3.1 Key Impacts 

 This work has several key impacts for policymakers and future study of employment 

impacts of renewable energy policy. The first is that it is, to the best of my knowledge, the first 

study to provide a direct comparison of county-level employment impacts from subsidy 

programs; corporate, personal, and other tax incentives; performance-based incentives; industry 

recruitment/support; renewable portfolio standards; and net metering. Of these, industry 

recruitment/support, renewable portfolio standards, and performance-based incentives were 

found to have positive and statistically significant relationships with non-hydro renewable 

energy employment. The other policy instruments were not found to have statistically significant 

relationships with direct non-hydro renewable energy employment. 

 The second key impact of this study is that it demonstrated the importance of addressing 

selection bias in studies of renewable energy employment. Specifically, by incorporating 
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controls on propensity scores this study provides models that account for more of the variation in 

non-hydro renewable energy employment across counties. Additionally, it showed that when 

selection bias is not addressed, renewable energy policies can be shown to have exaggerated 

impacts on renewable energy employment. 

 Finally, by interacting unemployment rate and coal employment variables with renewable 

energy policies this study provided a nuanced look into what county-level factors can influence 

policy outcomes. I found that in counties with high unemployment rates, three renewable energy 

policies (net metering, industry recruitment/support, and personal tax incentives) were actually 

found to have a negative and statistically significant relationship with non-hydro renewable 

energy employment. In the case of interacting coal employment with renewable energy policy 

variables, there was a mixed impact on county-level renewable energy employment. Personal tax 

incentives were found to have a negative influence on direct non-hydro renewable employment 

as coal employment increased, while corporate tax incentives and performance-based incentives 

were found to be more effective in counties with high coal employment. This highlights the fact 

that specific county-level characteristics, like unemployment rate and coal employment, should 

be accounted for when formulating and implementing renewable energy policies. 

 It is important to note that renewable energy policies are only one approach to addressing 

the distributional justice issues presented by the clean energy transition. Some jurisdictions are 

not well-positioned to produce electricity from renewable energy sources due to technical, 

political, or social factors. In these areas, investing in other industries may be more beneficial to 

increase employment opportunities like energy efficiency, grid modernization, environmental 

remediation, and manufacturing of renewable energy components (Pollin & Callaci, 2019).  
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3.2 Future Work 

 Future work in this field should address the limitations discussed in section 2.5. First, the 

creation of a policy stringency measure for each of the renewable energy policy instruments 

included would address the policy heterogeneity of the US. This would lead to a more robust and 

accurate model than one using simple binary variables describing the presence or absence of a 

program. Next, employment data that is more resolved (by renewable energy source) would lead 

to more precise measurements of renewable energy employment and more accurate comparisons 

to fossil-fuel sectors. Specifically, in the cases of manufacturing and construction of new power 

sectors, the additional resolution would be extremely helpful. Finally, additional study into the 

temporal differences in employment impacts of these renewable energy policy instruments 

would be helpful to inform policymakers. For example, incorporating the duration of the policy 

into a model and investigating how the employment impacts of that policy vary across time. 

 The clean energy transition is a rapidly evolving field with intersections into the fields of 

economics, political science, environmental science, and engineering, to name a few. It is 

important to try to forecast and project policy impacts on future energy demand, electricity 

generation, GHG emissions, and economic factors, which is the focus of significant research. 

Equally as important is to understand the impacts of past programs to see how they have 

influenced the clean energy transition, and if they are achieving desirable outcomes (both 

intended and unintended). This understanding of retrospective impacts can inform and guide 

policymakers in their policy formulation and implementation. This is the space that I would like 

to focus my future work. Specifically, looking into demographic (e.g. race or income) 

distributional justice impacts of the clean energy transition to ensure that no one is left behind.   
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Appendix A. IMPLAN Sector Aggregation 

To isolate the direct renewable energy employment at the county-level, I identified and 

aggregated the eight IMPLAN industries that are most closely related to renewable energy 

production. Six of the eight industries focus on renewable energy generation from different 

sources (hydroelectric, solar, wind, geothermal, biomass, and other). The associated North 

American Industry Classification System (NAICS) descriptions of the “Electric power 

generation – All Other” industry (Table A1) show that it represents tidal electric power 

generation. The two additional industries included in the direct renewable energy employment 

were “Electric power transmission and distribution” and “Construction of new power and 

communication structures.” It is important to note that these two industries include employment 

that is not strictly renewable energy; however, this industry aggregation scheme is the most 

resolved that I have found. Table A1 shows the IMPLAN industry codes used (with descriptions) 

and their associated NAICS codes and descriptions. 

Table A1: IMPLAN industry codes aggregated to create dependent variables 

Dependent Variable: Total and Non-Hydro County-level Renewable Energy Employment 

IMPLAN 

536 

Index 

IMPLAN Description 

2017 

NAICS 

Code 

NAICS Description 

41 
Electric power generation – 

Hydroelectric 
221111 

Electric power generation, 

hydroelectric 

41 
Electric power generation – 

Hydroelectric 
221111 Hydroelectric power generation 

41 
Electric power generation – 

Hydroelectric 
221111 Power generation, hydroelectric 

44 Electric power generation - Solar 221114 Electric power generation, solar 

44 Electric power generation - Solar 221114 Power generation, solar electric 

44 Electric power generation - Solar 221114 Solar farms 

45 Electric power generation - Wind 221115 Electric power generation, wind 

45 Electric power generation - Wind 221115 Power generation, wind electric 
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46 
Electric power generation - 

Geothermal 
221116 

Electric power generation, 

geothermal 

46 
Electric power generation - 

Geothermal 
221116 Geothermal electric power generation 

46 
Electric power generation - 

Geothermal 
221116 Power generation, geothermal 

47 
Electric power generation - 

Biomass 
221117 Biomass electric power generation 

47 
Electric power generation - 

Biomass 
221117 Electric power generation, biomass 

47 
Electric power generation - 

Biomass 
221117 Power generation, biomass 

48 
Electric power generation - All 

other 
221118 Electric power generation, tidal 

48 
Electric power generation - All 

other 
221118 Power generation, tidal electric 

49 
Electric power transmission and 

distribution 
221121 Electric power control 

49 
Electric power transmission and 

distribution 
221121 Electric power transmission systems 

49 
Electric power transmission and 

distribution 
221121 Transmission of electric power 

49 
Electric power transmission and 

distribution 
221122 Distribution of electric power 

49 
Electric power transmission and 

distribution 
221122 Electric power brokers 

49 
Electric power transmission and 

distribution 
221122 Electric power distribution systems 

54 
Construction of new power and 

communication structures 
237000 

Construction of Power and 

communication transmission lines 

54 
Construction of new power and 

communication structures 
237000 Construction of Power plants 

 

 Upon further examination, it was found that the electricity generation from hydroelectric 

sector (IMPLAN code 41) demonstrated a different employment trend than many of the other 
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renewable energy generation sectors. It decreases from 2001 to 2017, with a sharp decline in 

2009. The other renewable energy generation sectors are similar across the 17-year period, with 

slight increases in 2017. Figure A1 highlights this difference and Figure A2 shows a comparison 

of the dependent variable when this sector is removed. The analyses in this study were performed 

excluding the hydroelectric sector. 

 
Figure A1: Average county employment of all renewable electric power generation sectors from 2001 to 2017. 
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Figure A2: Average county employment aggregations including hydroelectric sector (Blue) and excluding the 

hydroelectric sector (Grey). 

 

The construction sector is a significant driver of renewable energy employment. Omitting 

this sector would lead to an underrepresentation of renewable energy jobs, as nearly 80% of the 

jobs created by renewable energy projects are in the construction/installation phase (Bae & 

Dall’erba, 2016). The dependent variable is likely picking up jobs that are not solely renewable 

energy. The dependent variable broken down by type of job can be seen in Figure A3. 
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Figure A3: County-level renewable energy employment by type. 

The dependent variable of all models by type of employment with the blue line signifying the generation 

employment, orange line representing distribution employment, and green line representing construction 

employment. 

 

Construction jobs are the primary type of employment represented in the dependent 

variable, as seen in Figure A3. One potential solution is using another data source to account for 

the specific construction jobs desired such as County Business Patterns (CBP) data from the U.S. 

Census Bureau; however, this source has the same resolution as IMPLAN when it comes to that 

sector.  
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Appendix B. DSIRE Database Filtering and Categorization 

 To identify differences in employment impacts among renewable energy programs, I had 

to find what programs included in the database were most relevant to renewable energy. 18 

relevant programs were chosen that were commonly mentioned or studied in previous studies of 

renewable energy policies. To make the interpretation of employment impacts easier, these 18 

programs were placed into eight categories based on having similar characteristics and a similar 

mechanism. As three programs were not found in our sample period, there are fifteen program 

types that were studied for this analysis. Table B1 shows what programs were chosen and what 

category each program was placed in. 

 
Table B1: Relevant DSIRE programs, program categories, and numbers of programs 

Program DSIRE Program 

Code 

Number of 

Total 

Programs 

Number of 

Relevant 

Programs 

Personal Tax Incentives    

Personal Tax Credit 31 79 49 

Personal Tax Deduction 32 17 9 

Corporate Tax Incentives    

Corporate Tax Credit 18 85 49 

Corporate Tax Deduction 19 6 2 

Other Tax Incentives    

Property Tax Incentive 78 108 47 

Sales Tax Incentive 81 88 46 

Performance-based Programs    

Performance-based Incentive 13 160 75 

Feed in Tariff 92 13 7 

Subsidy Programs    

Grant Program 87 364 62 

Rebate Program 88 2448 272 

Loan Program 89 567 56 

PACE Financing 76 70 16 

Net Metering    

Net Metering 37 124 8 

Renewable Portfolio Standards    

Renewable Portfolio Standard 38 60 14 

Industry-specific Programs    

Industry Recruitment/Support 40 87 40 
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 In addition to categorizing relevant programs, we had to filter the database based on 

several steps. Figure B1 highlights the steps involved in the filtering process that took us from 

the entire database (5,283 programs) and the programs we studied (752 programs). The largest 

removal of programs was due to lack of start dates in the database. A lack of end date in the 

database did not preclude a program from being studied, rather, all programs without an end date 

were assumed to continue until the end of our data (2017). 

 

 
 
Figure B1: Filtering process of the DSIRE database 

  

5283
•Total number of 
programs in DSIRE 
database

5138 •Removal of programs 
outside of contiguous U.S.

5029
•Removal of programs that 
are not at state, local, or 
utility level

4110
•Removal of programs 
outside of the 17 we are 
interested in

789 •Removal of programs that 
do not have a start date

752
•Removal of 
programs 
that start 
after 2017
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Appendix C. Comparison of Different Policy Lags 

 I ran models with four different policy lags and the results can be found in Error! 

Reference source not found.. 

Table C1: FE model results with four different policy lags 

Dependent variable: Non-hydro renewable energy employment 

VARIABLES 

COEFFICIENTS 

No Policy Lag One-Year 

Policy Lag 

Two-Year 

Policy Lag 

Three-Year 

Policy Lag 

     

Net Metering -31.56* -19.00 -7.904 -4.161 

 (18.97) (19.91) (20.55) (17.80) 

Renewable Portfolio Standard 37.68** 37.20** 43.76** 45.32*** 

 (17.05) (17.73) (17.65) (15.24) 

Industry Recruitment/Support 28.31*** 20.84** 13.41 5.199 

 (9.436) (9.274) (9.140) (8.516) 

Personal Tax Incentive -31.70*** -25.63*** -23.80*** -20.34*** 

 (6.358) (6.311) (6.336) (6.022) 

Corporate Tax Incentive 25.68*** 17.81** 12.38 5.692 

 (8.387) (8.235) (8.223) (7.416) 

Other Tax Incentive -1.615 2.380 4.761 2.111 

 (8.126) (7.902) (6.769) (5.446) 

Performance-Based Incentive 30.62*** 33.14*** 25.25*** 17.81** 

 (6.114) (7.217) (7.985) (8.244) 

Subsidy Programs -1.263 1.244 -0.727 -4.456 

 (6.588) (6.141) (6.080) (5.738) 

Coal Employment -0.574*** -0.589*** -0.568*** -0.533*** 

 (0.0976) (0.103) (0.103) (0.0842) 

GDP per Capita -4.079 -3.900 -3.749 -3.704 

 (3.511) (3.524) (3.647) (3.324) 

Unemployment Rate -51.18*** -51.38*** -50.48*** -45.20*** 

 (5.538) (5.439) (5.419) (4.697) 

Political Preference 176.9*** 175.7*** 173.7*** 156.4*** 

 (33.62) (33.39) (32.89) (30.69) 

Propensity Score 3,375*** 3,410*** 3,408*** 3,054*** 

 (414.3) (408.4) (409.3) (352.8) 

year = 2002 0.0315    

 (1.850)    

year = 2003 -54.40*** -53.42***   

 (3.147) (2.746)   

year = 2004 -45.70*** -46.41*** 9.702***  

 (3.273) (2.961) (2.099)  

year = 2005 -14.91*** -19.78*** 36.05*** 30.55*** 

 (3.178) (2.978) (3.121) (2.504) 

year = 2006 6.182* 0.396 52.47*** 49.70*** 
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 (3.277) (3.138) (4.223) (3.637) 

year = 2007 15.80*** 11.50*** 62.99*** 57.20*** 

 (4.319) (3.748) (4.922) (4.318) 

year = 2008 31.15*** 30.31*** 82.95*** 79.42*** 

 (5.629) (5.143) (6.082) (5.366) 

year = 2009 67.22*** 56.51*** 110.3*** 110.1*** 

 (12.32) (10.60) (11.56) (9.370) 

year = 2010 20.56 16.18 62.21*** 65.94*** 

 (13.34) (11.90) (11.39) (9.312) 

year = 2011 28.13** 21.33* 74.70*** 71.77*** 

 (12.24) (11.81) (11.70) (8.751) 

year = 2012 27.54** 21.88 74.70*** 78.44*** 

 (13.55) (13.48) (14.73) (11.87) 

year = 2013 -4.934 -12.47 41.48*** 43.60*** 

 (10.08) (9.899) (11.28) (9.910) 

year = 2014 52.84*** 47.58*** 100.7*** 107.5*** 

 (12.68) (11.89) (13.70) (13.19) 

year = 2015 28.91*** 22.81** 77.91*** 82.58*** 

 (11.03) (10.35) (11.79) (11.10) 

year = 2016 70.97*** 64.23*** 118.8*** 123.1*** 

 (13.25) (12.53) (14.23) (13.60) 

year = 2017 45.11*** 36.75*** 91.60*** 94.98*** 

 (11.83) (11.17) (12.85) (12.12) 

Constant -507.6*** -511.6*** -565.3*** -475.3*** 

 (92.29) (91.43) (91.79) (77.84) 

     

Observations 51,595 48,560 45,525 42,490 

R-squared (within) 0.242 0.249 0.248 0.235 

Number of Counties 3,035 3,035 3,035 3,035 

County FE Yes Yes Yes Yes 

Time FE Yes Yes Yes Yes 
Note: Clustered robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

 

 Of all the policy lags, the one-year lag has the highest within R-squared, but there is not 

that much variation across the four models. As a result, the no policy lag and a one-year policy 

lag configuration were used most often in the paper.  
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Appendix D. Correlation Matrix of All Variables Included in Models and Model 

Specification Tests 

 To identify any potential multicollinearity in the models, I created a correlation matrix of 

all variables included in the models. Figure D1 is the correlation matrix, with green shades 

signifying positive correlation and red shades signifying negative correlation. 

 

Figure D1: Correlation matrix of all variables included in the models 

  

The independent variables with the strongest pairwise correlations were population and GDP 

(0.96), net metering and renewable portfolio standards (0.57), and property tax incentives and 

corporate tax incentives (0.52). As a result, the population and GDP variables were removed 

from all models; however, the quotient of GDP and population was used as a new variable: 

Variables 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

(1) Total RE 

Employment
1.00 0.79 0.53 0.51 0.75 0.29 0.97 0.64 -0.03 0.06 -0.05 0.10 0.60 -0.02 0.00 0.08 -0.04 0.04 0.00 0.07 0.04 0.00 0.18

(2) Non-Hydro RE 

Employment
0.79 1.00 0.39 0.52 0.97 0.31 0.62 0.88 -0.01 0.03 -0.15 0.24 0.88 0.01 0.05 0.07 -0.04 -0.03 0.02 0.06 0.03 0.00 0.04

(3) RE Generation 

Employment
0.53 0.39 1.00 0.53 0.38 0.08 0.50 0.36 -0.01 0.00 -0.02 0.07 0.32 -0.01 0.01 0.03 -0.05 -0.01 -0.02 0.05 0.03 0.00 0.05

(4) Non-Hydro RE 

Generation 

Employment

0.51 0.52 0.53 1.00 0.49 0.11 0.46 0.45 0.01 0.05 -0.08 0.12 0.42 -0.01 0.01 0.03 -0.04 -0.04 -0.02 0.05 0.00 0.00 0.03

(5) RE Construction 

Employment
0.75 0.97 0.38 0.49 1.00 0.33 0.58 0.91 -0.01 0.04 -0.16 0.24 0.92 0.00 0.04 0.08 -0.04 -0.04 0.02 0.07 0.03 0.00 0.03

(6) Coal Employment 0.29 0.31 0.08 0.11 0.33 1.00 0.15 0.32 0.03 -0.03 -0.09 0.08 0.35 0.04 0.04 0.00 0.01 0.00 0.00 -0.03 -0.03 0.00 0.06

(7) Natural Gas 

Employment
0.97 0.62 0.50 0.46 0.58 0.15 1.00 0.47 -0.03 0.07 -0.01 0.04 0.42 -0.03 -0.02 0.08 -0.04 0.06 -0.01 0.07 0.04 0.01 0.21

(8) GDP 0.64 0.88 0.36 0.45 0.91 0.32 0.47 1.00 -0.02 0.04 -0.14 0.25 0.96 0.01 0.04 0.05 -0.04 -0.06 0.00 0.07 0.00 0.01 0.01

(9) Unemployment 

Rate
-0.03 -0.01 -0.01 0.01 -0.01 0.03 -0.03 -0.02 1.00 -0.06 -0.36 0.17 0.00 0.04 -0.01 0.18 0.01 -0.11 0.07 0.06 0.16 -0.03 -0.20

(10) Solar Resource 0.06 0.03 0.00 0.05 0.04 -0.03 0.07 0.04 -0.06 1.00 -0.07 -0.10 0.05 -0.31 -0.25 0.11 0.05 0.27 0.06 0.09 0.06 0.06 0.54

(11) Wind Resource -0.05 -0.15 -0.02 -0.08 -0.16 -0.09 -0.01 -0.14 -0.36 -0.07 1.00 -0.08 -0.17 0.15 0.11 -0.08 0.02 0.19 0.04 0.04 -0.01 0.01 0.71

(12) Political 

Preference
0.10 0.24 0.07 0.12 0.24 0.08 0.04 0.25 0.17 -0.10 -0.08 1.00 0.24 0.04 0.14 -0.03 0.00 -0.12 0.02 0.00 0.05 -0.01 -0.14

(13) Population 0.60 0.88 0.32 0.42 0.92 0.35 0.42 0.96 0.00 0.05 -0.17 0.24 1.00 0.01 0.04 0.06 -0.04 -0.06 0.00 0.07 0.00 0.00 -0.01

(14) Net Metering -0.02 0.01 -0.01 -0.01 0.00 0.04 -0.03 0.01 0.04 -0.31 0.15 0.04 0.01 1.00 0.57 -0.07 0.04 -0.13 -0.04 -0.07 0.01 -0.01 -0.08

(15) Renewable 

Portfolio Standard
0.00 0.05 0.01 0.01 0.04 0.04 -0.02 0.04 -0.01 -0.25 0.11 0.14 0.04 0.57 1.00 -0.08 0.17 -0.13 0.09 -0.18 0.15 -0.01 -0.07

(16) Industry 

Recruitment/Support
0.08 0.07 0.03 0.03 0.08 0.00 0.08 0.05 0.18 0.11 -0.08 -0.03 0.06 -0.07 -0.08 1.00 -0.18 0.03 0.06 0.33 0.24 0.03 0.07

(17) Personal Tax 

Incentive
-0.04 -0.04 -0.05 -0.04 -0.04 0.01 -0.04 -0.04 0.01 0.05 0.02 0.00 -0.04 0.04 0.17 -0.18 1.00 0.52 0.20 -0.29 0.01 -0.02 0.04

(18) Corporate Tax 

Incentive
0.04 -0.03 -0.01 -0.04 -0.04 0.00 0.06 -0.06 -0.11 0.27 0.19 -0.12 -0.06 -0.13 -0.13 0.03 0.52 1.00 0.10 0.03 0.10 0.03 0.33

(19) Other Tax 

Incentive
0.00 0.02 -0.02 -0.02 0.02 0.00 -0.01 0.00 0.07 0.06 0.04 0.02 0.00 -0.04 0.09 0.06 0.20 0.10 1.00 0.00 0.18 0.01 0.08

(20) Performance-

Based Incentive
0.07 0.06 0.05 0.05 0.07 -0.03 0.07 0.07 0.06 0.09 0.04 0.00 0.07 -0.07 -0.18 0.33 -0.29 0.03 0.00 1.00 0.00 0.04 0.12

(21) Subsidy 

Programs
0.04 0.03 0.03 0.00 0.03 -0.03 0.04 0.00 0.16 0.06 -0.01 0.05 0.00 0.01 0.15 0.24 0.01 0.10 0.18 0.00 1.00 0.03 0.06

(22) GDP per Capita 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 -0.03 0.06 0.01 -0.01 0.00 -0.01 -0.01 0.03 -0.02 0.03 0.01 0.04 0.03 1.00 0.05

(23) Propensity Score 0.18 0.04 0.05 0.03 0.03 0.06 0.21 0.01 -0.20 0.54 0.71 -0.14 -0.01 -0.08 -0.07 0.07 0.04 0.33 0.08 0.12 0.06 0.05 1.00
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county-level GDP per capita. Allison (1999) asserts that correlations greater than the 0.6 

threshold are a concern for the model. As such, we left the policy variables that were relatively-

highly correlated in the models as they were 0.6 or less.  

 To support that a FE model was an appropriate model choice a Hausman test was 

performed (Hausman, 1978). The null hypothesis of this test is that the difference of the 

coefficients of the Random-Effects (RE) model and the FE model is not systematic. This null 

hypothesis was rejected (0.0007), therefore the result of this model specification test showed that 

a FE model was more appropriate than a RE model in this case.  
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Appendix E. Full Model Result Tables with Years Included 

 I ran four FE models without control for propensity score. Two of them had total direct 

renewable energy employment as the dependent variable, rather than non-hydro employment, 

and two had a one-year policy lag. The results, with the added year coefficients, can be seen in 

Table E1. 

Table E1: Full model results with years included 

Dependent variables: Signified by title of models 

VARIABLES 

COEFFICIENTS 

Non-Hydro RE 

Employment 

Total RE 

Employment 

Non-Hydro RE 

Employment 

Total RE 

Employment 

     

Net Metering -8.323 -72.48* -9.065 -81.84** 

 (25.43) (37.95) (26.81) (39.96) 

Renewable Portfolio Standard 48.08** 7.234 61.43*** 31.03 

 (20.74) (36.92) (22.34) (39.47) 

Industry Recruitment/Support 16.47 -34.91 13.23 -33.89 

 (10.25) (27.77) (10.26) (26.99) 

Personal Tax Incentive -49.25*** -160.6*** -47.45*** -164.4*** 

 (8.184) (29.79) (7.944) (29.94) 

Corporate Tax Incentive 26.43** 64.26*** 22.95** 57.32** 

 (10.80) (23.63) (10.67) (23.07) 

Other Tax Incentive 5.138 49.78* 5.813 45.66* 

 (8.352) (25.86) (8.281) (24.01) 

Performance-Based Incentive 33.33*** 48.83*** 37.53*** 55.75*** 

 (7.177) (15.68) (8.239) (19.07) 

Grants, Rebates, or Loans -15.28** -47.01** -13.22** -48.76** 

 (7.573) (19.54) (6.716) (19.45) 

Coal Employment -0.304*** 0.624*** -0.323*** 0.586*** 

 (0.116) (0.170) (0.123) (0.180) 

GDP per Capita -4.610*** 3.091 -4.399*** 3.917 

 (1.321) (12.07) (1.285) (11.97) 

Unemployment Rate -5.971*** -25.91*** -5.905*** -27.10*** 

 (1.507) (4.644) (1.589) (4.997) 

Political Preference 115.3*** 226.9** 115.0*** 225.4** 

 (34.46) (92.34) (34.31) (92.30) 

year = 2002 0.120 -0.168   

 (1.954) (3.946)   

year = 2003 -62.59*** -47.36*** -61.00*** -41.74*** 

 (3.892) (6.732) (3.646) (5.131) 

year = 2004 -54.65*** -49.92*** -53.11*** -49.40*** 

 (4.226) (7.413) (3.924) (6.424) 

year = 2005 -13.60*** 5.118 -18.72*** -4.992 
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 (3.594) (8.092) (3.850) (7.863) 

year = 2006 17.77*** 53.17*** 11.81*** 46.43*** 

 (4.328) (10.39) (4.305) (9.784) 

year = 2007 35.43*** 95.86*** 30.27*** 84.74*** 

 (5.241) (13.06) (4.936) (12.25) 

year = 2008 69.90*** 204.5*** 70.92*** 207.5*** 

 (5.955) (19.19) (5.799) (17.28) 

year = 2009 141.1*** 342.8*** 127.8*** 313.7*** 

 (10.93) (33.60) (9.212) (29.75) 

year = 2010 93.57*** 342.4*** 86.66*** 333.0*** 

 (11.54) (38.34) (9.900) (36.33) 

year = 2011 92.12*** 316.3*** 87.07*** 319.0*** 

 (11.00) (36.49) (10.40) (36.95) 

year = 2012 101.6*** 392.3*** 99.69*** 404.1*** 

 (11.54) (42.72) (11.47) (44.59) 

year = 2013 40.18*** 259.5*** 34.87*** 266.0*** 

 (8.662) (35.20) (8.391) (36.70) 

year = 2014 128.1*** 408.4*** 124.4*** 409.3*** 

 (11.55) (40.46) (11.02) (40.61) 

year = 2015 94.58*** 355.5*** 88.94*** 354.1*** 

 (10.02) (35.30) (9.368) (35.45) 

year = 2016 131.6*** 321.8*** 127.1*** 324.5*** 

 (13.37) (33.54) (12.98) (34.10) 

year = 2017 100.6*** 292.9*** 93.19*** 289.2*** 

 (11.67) (30.26) (11.14) (30.66) 

Constant 229.1*** 574.3*** 232.8*** 590.2*** 

 (13.15) (26.84) (13.98) (29.02) 

     

Observations 51,595 51,595 48,560 48,560 

R-squared (within) 0.101 0.069 0.106 0.068 

Number of Counties 3,035 3,035 3,035 3,035 

County FE Yes Yes Yes Yes 

Time FE Yes Yes Yes Yes 

One-Year Policy Lag No No Yes Yes 
Note: The models with the 1-year policy lag omits the observations from 2001 and has 3,035 less observations as a 

result. Clustered robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

 

 The results show that most years were significantly significant in the model, with earlier 

years having negative coefficients and later years with positive. This highlights the fact that the 

time fixed effects are properly taking into account variation caused by price reductions, 

technological changes, and international policy on renewable energy. 
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Appendix F. Renewable Generation and Construction Model Results 

 I ran three models comparing the construction (short-term) and generation (long-term) 

impacts. The long-term impacts were then further disaggregated to total generation and non-

hydro generation. The results of these FE models can be found in Table F1. 

Table F1: Renewable generation and construction FE models 

Dependent variables: Signified by title of models 

VARIABLES 

COEFFICIENTS 

Construction 

Employment 

Generation 

Employment 

Non-Hydro 

Generation 

Employment 

    

Net Metering -50.49*** -26.61*** -1.048 

 (12.30) (7.996) (2.202) 

Renewable Portfolio Standard 40.04*** -14.95** -2.717 

 (11.58) (5.910) (3.126) 

Industry Recruitment/Support 34.36*** 2.492 -0.703 

 (7.377) (2.994) (1.055) 

Personal Tax Incentive -29.17*** 3.847** -1.170* 

 (5.079) (1.588) (0.677) 

Corporate Tax Incentive 18.18** -0.640 -1.253* 

 (7.495) (1.463) (0.663) 

Other Tax Incentive 2.176 -5.259** -0.942* 

 (5.511) (2.590) (0.514) 

Performance-Based Incentive 25.13*** -0.601 0.842 

 (4.252) (2.423) (0.576) 

Subsidy Programs 5.713 7.243*** 0.258 

 (4.277) (2.417) (0.783) 

Coal Employment -0.212*** -0.0173 -0.00291 

 (0.0471) (0.0182) (0.00355) 

GDP per Capita -3.834 0.463 -0.150 

 (2.747) (0.413) (0.147) 

Unemployment Rate -37.50*** 1.613*** -0.523** 

 (4.514) (0.517) (0.203) 

Political Preference 134.2*** -18.58 2.657** 

 (21.19) (11.52) (1.174) 

Propensity Score 2,492*** -51.73 45.79*** 

 (347.0) (40.63) (13.02) 

year = 2002 -1.027 -1.757 -0.0190 

 (1.349) (1.263) (0.611) 

year = 2003 -58.27*** -6.743*** 0.241 

 (3.058) (2.169) (0.833) 

year = 2004 -47.69*** -5.962** 0.581 

 (2.720) (2.413) (1.183) 
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year = 2005 -13.75*** -7.273*** 0.455 

 (2.061) (2.398) (1.025) 

year = 2006 10.52*** -7.598*** 0.460 

 (2.400) (2.558) (0.797) 

year = 2007 19.27*** -7.878*** 0.682 

 (2.936) (2.740) (0.744) 

year = 2008 37.36*** -3.310 1.281 

 (4.296) (2.489) (0.900) 

year = 2009 73.68*** -7.070** 0.828 

 (9.225) (3.496) (0.879) 

year = 2010 8.804 -21.05*** 0.175 

 (9.167) (5.553) (0.964) 

year = 2011 14.99* -21.72*** -0.412 

 (8.091) (5.344) (0.879) 

year = 2012 18.55** -20.65*** -0.0968 

 (8.935) (5.427) (0.893) 

year = 2013 -18.59*** -21.47*** -0.505 

 (6.456) (5.043) (0.890) 

year = 2014 50.18*** -18.17*** 0.498 

 (8.353) (4.952) (0.844) 

year = 2015 24.02*** -17.17*** 1.276 

 (6.933) (4.646) (0.863) 

year = 2016 65.56*** -16.18*** 1.993** 

 (8.078) (5.199) (0.870) 

year = 2017 36.63*** -12.91*** 4.300*** 

 (6.824) (4.879) (0.931) 

Constant -398.0*** 39.51*** -6.124* 

 (80.08) (8.144) (3.639) 

    

Observations 51,595 51,595 51,595 

R-squared (within) 0.238 0.018 0.007 

Number of Counties 3,035 3,035 3,035 

County FE Yes Yes Yes 

Time FE Yes Yes Yes 

One-Year Policy Lag No No No 
Note: Clustered robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

 

 The model with construction employment as the dependent variable was not significantly 

different from the main models presented in Section 2, whereas the generation models have very 

low within R-squared values and do not explain much variation in the dependent variable. As a 

result, no conclusions can be drawn from the comparison between the generation and 

construction models.  
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Appendix G: Logistic Regression Results 

 To calculate the propensity scores of each county having aggressive renewable energy 

policy, I calculated logistic regressions of each individual year of the panel dataset to see which 

would be the best measure using Equation 3. The year 2003 was found to have the best pseudo-

R-squared (0.22) and was used to estimate the propensity scores for each county in every year of 

the sample. The results of that logistic regression model can be found in Table G1. 

Table G1: Logistic regression results 

Dependent variable: Aggressive renewable energy policy in 2003 

VARIABLES 
ODDS RATIOS 

DV: Aggressive RE Policy in 2003 

  

Non-Hydro RE Employment 1.001* 

Coal Employment 1.001*** 

Natural Gas Employment 1.001*** 

Political Preference 0.851 

Population 0.984** 

Wind Resource 4.068*** 

Solar Resource 2.704*** 

Unemployment Rate 1.100*** 

GDP 1.000 

Constant 8.03e-08*** 

  

Observations 3,035 

Pseudo-R-squared 0.22 

County FE No 

Time FE No 
Note: *** p<0.01, ** p<0.05, * p<0.1 

 

 Coal employment, natural gas employment, wind resource, solar resource, and 

unemployment were the variables with statistically significant odds ratios greater than one. This 

means that they increased the probability of a county being aggressive in 2003, holding all else 

constant. Non-hydro RE employment, political preference, and GDP were not found to have 

significant odds ratios.  
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